Desorption of dye from activated carbon beds: effects of temperature, pH, and alcohol

The adsorption isotherms of yellow and red dye solutions onto granular activated carbon at varying solution pHs (2–8), temperatures (15–50°C), and alcohol concentrations (0–20%) were experimentally determined by batch tests and the Tóth model was found to best fit the adsorption isotherm data for va...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water research (Oxford) 2001-12, Vol.35 (17), p.4159-4165
Hauptverfasser: Chern, Jia-Ming, Wu, Chia-Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The adsorption isotherms of yellow and red dye solutions onto granular activated carbon at varying solution pHs (2–8), temperatures (15–50°C), and alcohol concentrations (0–20%) were experimentally determined by batch tests and the Tóth model was found to best fit the adsorption isotherm data for varying solution pHs, temperatures, and alcohol concentrations. The maximum adsorption capacity was found to decrease with increasing solution pH and alcohol concentration and could be predicted by the correlation equations obtained in this study. A correlation equation was also obtained to account for the effects of solution temperature on the adsorption equilibrium constant. The 25°C water was found to be a very poor regenerant for the carbon bed presaturated with the yellow dye compared with 20% alcohol solution. A simple equation was derived, based on non-linear wave propagation theory, to predict the desorption curves of activated carbon bed. Given presaturation concentration, bed density and void fraction, and adsorption isotherm, the wave propagation theory predicted the desorption curves quite satisfactorily.
ISSN:0043-1354
1879-2448
DOI:10.1016/S0043-1354(01)00127-0