The homologous pairing domain of RecA also mediates the allosteric regulation of DNA binding and ATP hydrolysis: a remarkable concentration of functional residues

Switching between the active (ATP and DNA bound) and inactive conformations of the homologous recombination RecA protein is regulated by ATP hydrolysis. First, we use the homologous pairing domain of RecA derived from its mobile loop L2 to show that the interaction of this random coil peptide with t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 2000-11, Vol.303 (5), p.709-720
Hauptverfasser: Voloshin, O N, Wang, L, Camerini-Otero, R D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Switching between the active (ATP and DNA bound) and inactive conformations of the homologous recombination RecA protein is regulated by ATP hydrolysis. First, we use the homologous pairing domain of RecA derived from its mobile loop L2 to show that the interaction of this random coil peptide with the gamma-phosphate of ATP results in a peptide beta-conformation similar to that previously shown to be induced by DNA binding. Next, we show that in the whole RecA protein two residues in this L2 domain, Gln194 and Arg196, are catalytic amino acid residues for ATP hydrolysis and functionally resemble the corresponding residues engaged in GTP hydrolysis by two distinct classes of G proteins. Finally, we show that the role of DNA and high salt in the stimulation of the ATPase of RecA is to stabilize this highly mobile region involved in hydrolysis. This is a role similar to that described for RGSs in the activation of the GTPase of heterotrimeric G proteins. Therefore, (i) a prototypical DNA-dependent ATPase and ATP-stimulated DNA-binding protein, RecA, and eukaryotic signaling proteins share common stereochemical regulatory mechanisms; and (ii) in a remarkable example of parsimony, loop L2 is a molecular switch that controls both ATP promoted DNA binding and pairing reactions and DNA stimulated ATP hydrolysis.
ISSN:0022-2836
DOI:10.1006/jmbi.2000.4163