Characterization of pyridine nucleotide coenzymes in the hyperthermophilic archaeon Pyrococcus furiosus

Pyridine-type nucleotides were identified in cell-free extracts of the hyperthermophilic archaeon Pyrococcus furiosus by their ability to replace authentic nicotinamide adenine dinucleotide (phosphate) [NAD(P)] in assays using pure P. furiosus enzymes. The nucleotides were purified using a combinati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Extremophiles : life under extreme conditions 2001-12, Vol.5 (6), p.393-398
Hauptverfasser: Pan, G, Verhagen, M F, Adams, M W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pyridine-type nucleotides were identified in cell-free extracts of the hyperthermophilic archaeon Pyrococcus furiosus by their ability to replace authentic nicotinamide adenine dinucleotide (phosphate) [NAD(P)] in assays using pure P. furiosus enzymes. The nucleotides were purified using a combination of ion-exchange and reverse-phase chromatography. They were identified as NAD and NADP by analyses using liquid chromatography-mass spectrometry and high performance liquid chromatography. Their intracellular concentrations were measured in P. furiosus grown using maltose and peptides as the carbon sources. The concentrations decreased during the lag phase but remained constant during the exponential phase at approximately 0.17 and 0.13 mM, respectively. The amount of NAD was significantly lower (more than four-fold lower) than that in mesophilic bacteria, although the NADP concentration was comparable. The internal concentrations of NADH and NADPH in P. furiosus were determined to be 0.14 mM and 0.04 mM, respectively. The overall cellular concentration of NAD(P)(H) in P. furiosus (0.48 mM) is about half the value in the mesophiles. The NAD(H)/NADP(H) ratio in P. furiosus is consistent with the preferred use of NADP by several catabolic enzymes that have been purified from this organism. The mechanisms by which hyperthermophiles stabilize these thermally labile nicotinamide nucleotides are not known.
ISSN:1431-0651
1433-4909
DOI:10.1007/s007920100216