Nucleotide Variation Regulates the Level of Enhancement by Hypersensitive Site 2 of the β-Globin Locus Control Region

ABSTRACT The β-globin locus control region hypersensitive site 2 (HS2) enhancer possesses a unique property for stimulating high-level globin gene expression. Although the deletion of cis-acting motifs influences the level of enhancement conferred by HS2, there is controversy on whether polymorphism...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood cells, molecules, & diseases molecules, & diseases, 2001-09, Vol.27 (5), p.803-811
Hauptverfasser: Ofori-Acquah, Solomon F., Lalloz, Michel R.A., Layton, D.Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT The β-globin locus control region hypersensitive site 2 (HS2) enhancer possesses a unique property for stimulating high-level globin gene expression. Although the deletion of cis-acting motifs influences the level of enhancement conferred by HS2, there is controversy on whether polymorphism of the same elements contributes to variation of the fetal hemoglobin (HbF) level among patients with sickle cell anemia. We analyzed reporter gene activity of constructs containing variant HS2 enhancers derived from βS chromosomes to directly test the effect of polymorphism on enhancer activity. Constructs containing four enhancer variants linked to an identical γ-globin promoter showed markedly different levels of reporter gene activity. Juxtaposition of HS2 derived from the Asian and Senegal chromosomes, which are associated with similarly high levels of HbF, to cognate sequence extending to −1500 of the Gγ globin gene showed significantly different levels of reporter gene activity. Our findings indicate that nucleotide variation regulates the level of enhancement conferred by HS2; however, the reporter activities showed no correlation with the level of Hb F associated with the common βS chromosomes.
ISSN:1079-9796
1096-0961
DOI:10.1006/bcmd.2001.0449