Identifying Sources of Stress to Native Aquatic Fauna Using a Watershed Ecological Risk Assessment Framework

The free-flowing Clinch and Powell River Basin, located in southwestern Virginia, United States, historically had one of the richest assemblages of native fish and freshwater mussels in the world. Nearly half of the species once residing here are now extinct, threatened, or endangered. The United St...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2001-12, Vol.35 (24), p.4711-4718
Hauptverfasser: Diamond, Jerome M, Serveiss, Victor B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The free-flowing Clinch and Powell River Basin, located in southwestern Virginia, United States, historically had one of the richest assemblages of native fish and freshwater mussels in the world. Nearly half of the species once residing here are now extinct, threatened, or endangered. The United States Environmental Protection Agency's framework for conducting an ecological risk assessment was used to structure a watershed-scale analysis of human land use, in-stream habitat quality, and their relationship to native fish and mussel populations in order to develop future management strategies and prioritize areas in need of enhanced protection. Our analyses indicate that agricultural and urban land uses as well as proximity to mining activities and transportation corridors are inversely related to fish index of biotic integrity (IBI) and mussel species diversity. Forward stepwise multiple regression analyses indicated that coal mining had the most impact on fish IBI followed by percent cropland and urban area in the riparian corridor (R  2 = 0.55, p = 0.02); however, these analyses suggest that other site-specific factors are important. Habitat quality measures accounted for as much as approximately half of the variability in fish IBI values if the analysis was limited to sites within a relatively narrow elevation range. These results, in addition to other data collected in this watershed, suggest that nonhabitat-related stressors (e.g., accidental chemical spills) also have significant effects on biota in this basin. The number of co-occurring human land uses was inversely related to fish IBI (r = −0.49, p < 0.01). Sites with ≥2 co-occurring land uses had >90% probability of having
ISSN:0013-936X
1520-5851
DOI:10.1021/es0015803