Stabilization of Human Recombinant Erythropoietin through Interactions with the Highly Branched N-Glycans

Human erythropoietin (EPO) produced in Chinese hamster ovary cells (CHO-EPO) is a hydrophobic protein stabilized by the highly branched complex-type N-glycans. To characterize the stabilizing effect of the N-glycans, the properties of enzymatically N-glycan-modified CHO-EPO species were compared spe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biochemistry (Tokyo) 2000-11, Vol.128 (5), p.731-737
Hauptverfasser: Toyoda, Teruko, Itai, Tomokazu, Arakawa, Tsutomu, Aoki, Kenneth H., Yamaguchi, Haruki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human erythropoietin (EPO) produced in Chinese hamster ovary cells (CHO-EPO) is a hydrophobic protein stabilized by the highly branched complex-type N-glycans. To characterize the stabilizing effect of the N-glycans, the properties of enzymatically N-glycan-modified CHO-EPO species were compared spectrophotometrically. CD and fluorescence spectra following the protein unfolding induced by guanidine hydrochloride or pH revealed that the inner regions including the galactose residues of the N-glycans stabilize the protein conformation. The decrease in the conformational stability caused by enzymatic trimming of the N-glycans was associated with the exposure of the hydrophobic protein surface areas accessible to 1-anilino-8-naphthalenesulfonic acid (ANS) binding. Further, the ANS binding and heat denaturation of Escherichia coli-expressed EPO (nonglycosylated EPO) were depressed in dilute solutions (1 mM or so) of free N-glycans of the complex type. These results, together with the finding that the N-glycans of CHO-EPO make little contact with the aromatic amino acid residues exposed on the protein surface, indicate that the inner regions including the galactose residues of the intramolecular N-glycans stabilize the protein conformation by clinging to the hydrophobic protein surface areas mainly made up of nonaromatic hydrocarbon groups
ISSN:0021-924X
DOI:10.1093/oxfordjournals.jbchem.a022809