Nonwoven Fiber Barriers for Control of Cabbage Maggot and Onion Maggot (Diptera: Anthomyiidae)

We investigated the use of nonwoven fiber barriers for control of cabbage maggot, Delia radicum (L.), and onion maggot, D. antiqua (Meigen). The barriers consist of arrangements of minute fibers loosely intertwined in “web” form. Results from a greenhouse experiment showed that manually applied grap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of economic entomology 2001-12, Vol.94 (6), p.1485-1491
Hauptverfasser: Hoffmann, Michael P., Kuhar, Thomas P., Baird, Joel M., Gardner, Jeffrey, Schwartz, Peter, Shelton, Anthony M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigated the use of nonwoven fiber barriers for control of cabbage maggot, Delia radicum (L.), and onion maggot, D. antiqua (Meigen). The barriers consist of arrangements of minute fibers loosely intertwined in “web” form. Results from a greenhouse experiment showed that manually applied graphite fibers placed at the base of broccoli plants reduced the number of D. radicum eggs by 64–98%, and that efficacy increased with greater fiber density. Using a melt extrusion process, we devised a method for on-site creation of nonwoven fibers of ethylene vinyl acetate (EVA). In field trials with broccoli and onion plants, EVA fibers significantly reduced the number of cabbage and onion maggots infesting plants. Fiber barriers provided comparable control to standard insecticide applications. The addition of blue, yellow, red, or black pigments, as well as optical brighteners that absorb UV light did not enhance fiber efficacy. Incorporation of capsaicin olfactory repellent to EVA also did not enhance fiber efficacy. Nonwoven fiber barriers may offer an alternative to insecticides for control of cabbage maggot and onion maggot and possibly other insect pests. Additional research is needed to improve the application process and to identify economically feasible and biodegradable compounds for fibers.
ISSN:0022-0493
1938-291X
0022-0493
DOI:10.1603/0022-0493-94.6.1485