Regulation of IGFBP-4 levels in human intestinal muscle by an IGF-I-activated, confluence-dependent protease

Human intestinal smooth muscle cells in culture produce insulin-like growth factor-I (IGF-I), IGF binding protein-3 (IGFBP-3), IGFBP-4, and IGFBP-5, which can modulate the effects of IGF-I on growth. This study examined the role of IGFBP-4 on IGF-I-induced growth and the mechanisms regulating IGFBP-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology: Gastrointestinal and liver physiology 2000-11, Vol.279 (5), p.G975-G982
Hauptverfasser: Kuemmerle, J F, Teng, B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human intestinal smooth muscle cells in culture produce insulin-like growth factor-I (IGF-I), IGF binding protein-3 (IGFBP-3), IGFBP-4, and IGFBP-5, which can modulate the effects of IGF-I on growth. This study examined the role of IGFBP-4 on IGF-I-induced growth and the mechanisms regulating IGFBP-4 levels. IGFBP-4 inhibited IGF-I-induced [(3)H]thymidine incorporation. IGFBP-4 mRNA levels were not altered by IGF-I. IGF-I caused a concentration-dependent activation of an endogenous IGFBP-4 protease, resulting in time-dependent degradation of intact IGFBP-4 into inactive fragments. Protease activity was measured in a cell-free assay using smooth muscle cell conditioned medium containing the IGFBP-4 protease. The protease was inhibited by EDTA and benzamidine. Protease activity was highest in proliferating cells and lowest in postconfluent cells. The role of endogenous IGF-I in regulating IGFBP-4 degradation was confirmed by the ability of an IGF-I antagonist to inhibit IGF-I-activated IGFBP-4 proteolysis in intact cells. We conclude that in human intestinal smooth muscle cells levels of secreted IGFBP-4 are determined by the confluence-dependent production of a cation-dependent serine protease that is activated by endogenous IGF-I.
ISSN:0193-1857
1522-1547
DOI:10.1152/ajpgi.2000.279.5.g975