The Carboxyl-terminal Domain of the Granulocyte Colony-stimulating Factor Receptor Uncouples Ribosomal Biogenesis from Cell Cycle Progression in Differentiating 32D Myeloid Cells

Translational regulation plays an important role in development. In terminally differentiating cells a decrease in translation rate is common, although the regulatory mechanisms are unknown. We utilized 32Dcl3 myeloblast cells to investigate translational regulation during granulocyte colony-stimula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2001-12, Vol.276 (52), p.49410-49418
Hauptverfasser: Kroll, Sandra L., Barth-Baus, Diane, Hensold, Jack O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Translational regulation plays an important role in development. In terminally differentiating cells a decrease in translation rate is common, although the regulatory mechanisms are unknown. We utilized 32Dcl3 myeloblast cells to investigate translational regulation during granulocyte colony-stimulating factor (G-CSF)-induced differentiation. G-CSF causes a significant decrease in translation rate compared with interleukin-3, which is a mitogen for these cells. Although these two cytokines exhibit modest differences in their effect on translation factor phosphorylation, they exhibit dramatic differences in their effect on ribosomal abundance and ribosomal DNA transcription. However, because both cytokines stimulate cell cycling, G-CSF induces a dissociation of ribosomal biogenesis from cell cycle progression. This uncoupling of ribosomal biogenesis from cell cycle progression appears to be closely related to the transmission of a differentiation signal, because it is not observed in cells expressing a carboxyl-terminally truncated G-CSF receptor, which supports proliferation but not differentiation of these cells. Because a similar event occurs early in differentiation of murine erythroleukemic cells, this suggests that ribosomal content is a common target of differentiating agents.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M109577200