The Caenorhabditis elegans homolog of FGD1, the human Cdc42 GEF gene responsible for faciogenital dysplasia, is critical for excretory cell morphogenesis

FGD1 mutations result in faciogenital dysplasia, an X-linked human disease that affects skeletogenesis. FGD1 encodes a guanine nucleotide exchange factor (GEF) that specifically activates the Rho GTPase Cdc42. To gain insight into the function of FGD1, we have isolated and characterized fgd-1, the C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human molecular genetics 2001-12, Vol.10 (26), p.3049-3062
Hauptverfasser: Gao, J, Estrada, L, Cho, S, Ellis, R E, Gorski, J L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:FGD1 mutations result in faciogenital dysplasia, an X-linked human disease that affects skeletogenesis. FGD1 encodes a guanine nucleotide exchange factor (GEF) that specifically activates the Rho GTPase Cdc42. To gain insight into the function of FGD1, we have isolated and characterized fgd-1, the Caenorhabditis elegans homolog of the human FGD1 gene. Comparative sequence analyses show that fgd-1 and FGD1 share a similar structural organization and a high degree of sequence identity throughout shared signaling domains. In nematodes, interference with fgd-1 expression results in excretory cell abnormalities and cystic dilation of the excretory cell canals. Molecular lesions associated with two exc-5 alleles affect the fgd-1 gene, and fgd-1 transgenic expression rescues the Exc-5 phenotype. Together, these data confirm that the fgd-1 transcript corresponds to the exc-5 gene. Transgenic expression studies show that fgd-1 has a limited pattern of expression that is confined to the excretory cell during development, a finding that suggests that the C.elegans FGD-1 protein might function in a cell autonomous manner. Serial observations indicate that fgd-1 mutations lead to developmental excretory cell abnormalities that cause cystic dilation and interfere with canal process extension. Based on these data, we conclude that fgd-1 is the C.elegans homolog of the human FGD1 gene, a new member of the FGD1-related family of RhoGEF genes, and that fgd-1 plays a critical role in excretory cell morphogenesis and cellular organization.
ISSN:0964-6906
1460-2083
1460-2083
DOI:10.1093/hmg/10.26.3049