Satellite-tagged transcribing sequences in Bubalus bubalis genome undergo programmed modulation in meiocytes: possible implications for transcriptional inactivation

We cloned and sequenced a 1378 bp BamHI satellite DNA fraction from the water buffalo Bubalus bubalis and have studied its expression in different tissues. The GC-rich sequences of the resultant contig pDS5 crosshybridize only with bovid DNA and are not conserved evolutionarily. Typing of buffalo ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:DNA and cell biology 2001-09, Vol.20 (9), p.587-593
Hauptverfasser: Chattopadhyay, M, Gangadharan, S, Kapur, V, Azfer, M A, Prakash, B, Ali, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We cloned and sequenced a 1378 bp BamHI satellite DNA fraction from the water buffalo Bubalus bubalis and have studied its expression in different tissues. The GC-rich sequences of the resultant contig pDS5 crosshybridize only with bovid DNA and are not conserved evolutionarily. Typing of buffalo genomic DNA using pDS5 with several restriction enzymes revealed multilocus monomorphic bands. Similar typing of cattle, buffalo, goat, sheep, and gaur genomic DNA revealed variations in copy number and allele length giving rise to species-specific band patterns. Expression study of pDS5 in bubaline samples by RNA slot-blot, Northern blot, and RT-PCR showed various levels of signal in all the somatic tissues and germline cells except heart. A GenBank database search revealed homology of pDS5 sequences in the 5' region from nt 1-1261 with collagen gene. An AluI typing analysis of DNA from bubaline semen samples showed consistent loss of two bands. The presence of corresponding bands in somatic tissues suggests a sequence modulation within the pDS5 array in meiocytes during spermatogenesis, which is restored in the somatic cells after fertilization. Modulation of the satellite-tagged transcribing sequence in the meiocytes may be a mechanism of its inactivation.
ISSN:1044-5498
1557-7430
DOI:10.1089/104454901317095007