Changes in expression of vascular endothelial growth factor and angiopoietin-1 and -2 in the macaque corpus luteum during the menstrual cycle

To determine the temporal expression of vascular growth factors during the lifespan of the primate corpus luteum, experiments were designed to detect mRNA for vascular endothelial growth factor (VEGF), angiopoietin (Ang)-1 and Ang-2 and to localize protein expression for VEGF in macaque luteal tissu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular human reproduction 2000-11, Vol.6 (11), p.993-998
Hauptverfasser: Hazzard, T.M., Christenson, L.K., Stouffer, R.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To determine the temporal expression of vascular growth factors during the lifespan of the primate corpus luteum, experiments were designed to detect mRNA for vascular endothelial growth factor (VEGF), angiopoietin (Ang)-1 and Ang-2 and to localize protein expression for VEGF in macaque luteal tissue during the menstrual cycle. Corpora lutea (n = 3–5/stage) were collected during the early (3–5 days post-luteinizing hormone surge), mid- (6–8 days), mid-late (10–12 days), and late (14–16 days) luteal phase and at menstruation (17–18 days). Reverse transcription-polymerase chain reaction products equated to cDNA for VEGF, Ang-1 and Ang-2 in all corpora lutea. VEGF mRNA levels increased (P < 0.05) from early to mid-luteal phase and declined in the late luteal phase and at menstruation. Immunostaining for VEGF was detected in the cytoplasm of steroidogenic luteal cells, with the most intense staining in the early luteal phase. Ang-1 and Ang-2 mRNA expression was low in the early to mid-luteal phase but increased (P < 0.05) at late luteal phase before declining at menstruation. These data suggest transcriptional control of VEGF, Ang-1 and Ang-2, as well as post-transcriptional control of VEGF, in macaque corpus luteum. Dynamic expression of angiogenic/angiostatic factors appears critical for development, maintenance and regression of the luteal microvasculature during the menstrual cycle.
ISSN:1360-9947
1460-2407
1460-2407
DOI:10.1093/molehr/6.11.993