The role of NAD(P)H oxidoreductase (DT-Diaphorase) in the bioactivation of quinone-containing antitumor agents: a review

Bioactivation of quinone-containing anticancer agents has been studied extensively within the context of the chemistry and structure of the individual quinones which may result in various mechanisms of bioactivation and activity. In this review we focus on the two electron enzymatic reduction/activa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Free radical biology & medicine 2000-08, Vol.29 (3), p.263-275
1. Verfasser: Gutierrez, Peter L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bioactivation of quinone-containing anticancer agents has been studied extensively within the context of the chemistry and structure of the individual quinones which may result in various mechanisms of bioactivation and activity. In this review we focus on the two electron enzymatic reduction/activation of quinone-containing anticancer agents by DT Diaphorase (DTD). This enzyme has become important in oncopharmacology because its activity varies with tissues and it has been found to be elevated in tumors. Thus, a selective tumor cell kill can exist for agents that are good substrates for this enzyme. In addition, the enzyme can be induced by a variety of agents, a fact that can be used in chemotherapy. That is induction by a nontoxic agent followed by treatment with a good DT-Diaphorase substrate. A wide variety of anticancer drugs are discussed some of which are not good substrates such as Adriamycin, and some of which are excellent substrates. The latter category includes a variety of quinone containing alkylating agents.
ISSN:0891-5849
1873-4596
DOI:10.1016/S0891-5849(00)00314-2