Further studies on the activation of rat median raphe serotonergic neurons by inescapable sound stress

Previous studies, using a biochemical measure of serotonergic neuronal function, show that inescapable, randomly presented sound pulses activate serotonergic neurons in the rat median raphe but not dorsal raphe nucleus. The present study reveals that this activation also occurs in serotonin projecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain research 2001-12, Vol.923 (1), p.103-111
Hauptverfasser: Daugherty, Wilson P, Corley, Karl C, Phan, Tam-Hao, Boadle-Biber, Margaret C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Previous studies, using a biochemical measure of serotonergic neuronal function, show that inescapable, randomly presented sound pulses activate serotonergic neurons in the rat median raphe but not dorsal raphe nucleus. The present study reveals that this activation also occurs in serotonin projection areas, in hippocampus, nucleus accumbens and cortex but not in caudate nucleus. The selectivity of this response is examined by comparing the response to sound stress with that produced by morphine, a treatment known to selectively activate dorsal raphe but not median raphe serotonergic neurons. Two approaches are used in Sprague–Dawley rat to measure the activation of serotonergic neurons: (1) determination ex vivo of accumulation of 5-hydroxytryptophan (5-HTP) in tissue from the dorsal and median raphe nuclei, hippocampus, cortex, caudate nucleus, and nucleus accumbens following in vivo inhibition of aromatic amino acid decarboxylase; and (2) measurement of extracellular serotonin levels in hippocampus, caudate nucleus, and nucleus accumbens. Sound stress increases 5-HTP accumulation in median raphe nucleus, hippocampus, cortex, and nucleus accumbens, but not dorsal raphe nucleus or caudate nucleus. Sound stress also enhances extracellular serotonin levels in hippocampus and nucleus accumbens, but not caudate nucleus. In contrast, the morphine treatment enhances 5-HTP accumulation in dorsal raphe nucleus, cortex and caudate nucleus, but not in median raphe nucleus, hippocampus or nucleus accumbens. Furthermore, it increases extracellular serotonin levels in only the caudate nucleus. The combined effects of sound stress and morphine on 5-HTP accumulation are identical to those obtained by each treatment individually. These findings provide further support for the presence of serotonergic neurons within the median raphe nucleus that have a unique response profile. These neurons may have an important role in responses or adaptations to stress.
ISSN:0006-8993
1872-6240
DOI:10.1016/S0006-8993(01)03198-5