Mean-field diffusion-limited aggregation: a "density" model for viscous fingering phenomena

We explore a universal "density" formalism to describe nonequilibrium growth processes, specifically, the immiscible viscous fingering in Hele-Shaw cells (usually referred to as the Saffman-Taylor problem). For that we develop an alternative approach to the viscous fingering phenomena, who...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2001-12, Vol.64 (6 Pt 2), p.066303-066303, Article 066303
1. Verfasser: Bogoyavlenskiy, V A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We explore a universal "density" formalism to describe nonequilibrium growth processes, specifically, the immiscible viscous fingering in Hele-Shaw cells (usually referred to as the Saffman-Taylor problem). For that we develop an alternative approach to the viscous fingering phenomena, whose basic concepts have been recently published in a Rapid Communication [Phys. Rev. E 63, 045305(R) (2001)]. This approach uses the diffusion-limited aggregation (DLA) paradigm as a core: we introduce a mean-field DLA generalization in stochastic and deterministic formulations. The stochastic model, a quasicontinuum DLA, simulates Monte Carlo patterns, which demonstrate a striking resemblance to natural Hele-Shaw fingers and, for steady-state growth regimes, follow precisely the Saffman-Taylor analytical solutions in channel and sector configurations. The relevant deterministic theory, a complete set of differential equations for a time development of density fields, is derived from that stochastic model. As a principal conclusion, we prove an asymptotic equivalency of both the stochastic and deterministic mean-field DLA formulations to the classic Saffman-Taylor hydrodynamics in terms of an interface evolution.
ISSN:1539-3755
1063-651X
1095-3787
DOI:10.1103/PhysRevE.64.066303