1/f noise and extreme value statistics
We study finite-size scaling of the roughness of signals in systems displaying Gaussian 1/f power spectra. It is found that one of the extreme value distributions, the Fisher-Tippett-Gumbel (FTG) distribution, emerges as the scaling function when boundary conditions are periodic. We provide a realis...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2001-12, Vol.87 (24), p.240601-240601, Article 240601 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study finite-size scaling of the roughness of signals in systems displaying Gaussian 1/f power spectra. It is found that one of the extreme value distributions, the Fisher-Tippett-Gumbel (FTG) distribution, emerges as the scaling function when boundary conditions are periodic. We provide a realistic example of periodic 1/f noise, and demonstrate by simulations that the FTG distribution is a good approximation for the case of nonperiodic boundary conditions as well. Experiments on voltage fluctuations in GaAs films are analyzed and excellent agreement is found with the theory. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.87.240601 |