Morphine treatment induced calcitonin gene-related peptide and substance P increases in cultured dorsal root ganglion neurons
The mechanism of spinal tolerance to the analgesic effects of opiates is unclear at present. We have reported previously that calcitonin gene-related peptide-like immunoreactivity was significantly increased in primary afferents of the spinal dorsal horn during the development of morphine tolerance,...
Gespeichert in:
Veröffentlicht in: | Neuroscience 2000-01, Vol.99 (3), p.529-539 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The mechanism of spinal tolerance to the analgesic effects of opiates is unclear at present. We have reported previously that calcitonin gene-related peptide-like immunoreactivity was significantly increased in primary afferents of the spinal dorsal horn during the development of morphine tolerance, suggesting that changes in the level of pain-related neuropeptides in dorsal root ganglion neurons may be involved [Menard D. P.
et al. (1996)
J. Neurosci.
16, 2342–2351]. In this study, we investigated if
in vitro treatment with morphine can mimic the
in vivo findings and induce increases in calcitonin gene-related peptide-like immunostaining in cultured dorsal root ganglion neurons from young (three-month-old) and middle-aged (10-month-old) adult rats. Following a repetitive exposure to morphine sulfate (1, 5, 10
μM) for six days, the number of calcitonin gene-related peptide- and substance P-immunoreactive neurons in cultured dorsal root ganglia from three- and 10-month-old rats was significantly increased. A lower concentration (0.5
μM) of morphine induced these increases only in dorsal root ganglion neurons from middle-aged rats. Morphine treatment was also found to increase the number of calcitonin gene-related peptide-immunoreactive neurons possessing multiple, long branches (i.e. with at least one branch >0.5
mm). This apparent increase in the number of calcitonin gene-related peptide- and substance P-immunoreactive neurons observed following morphine treatment was blocked by naloxone, an opiate antagonist, indicating the involvement of genuine opioid receptors. No significant change in the number of neuropeptide Y- or galanin-immunoreactive neurons in cultured dorsal root ganglia was detected following any of these treatments.
These data suggest that repeated exposure to morphine rather selectively increases calcitonin gene-related peptide- and substance P-like immunoreactivity in cultured dorsal root ganglion neurons. Moreover, the sensitivity to morphine-induced changes is greater in cultured dorsal root ganglion neurons from 10- compared to three-month-old rats. Hence, cultured dorsal root ganglion neurons can provide a model to investigate the cellular and molecular mechanisms underlying alterations in neuropeptide levels following repeated exposure to opiates and their relevance to the development of opioid tolerance. |
---|---|
ISSN: | 0306-4522 1873-7544 |
DOI: | 10.1016/S0306-4522(00)00226-8 |