Amino-terminal truncation of CXCR3 agonists impairs receptor signaling and lymphocyte chemotaxis, while preserving antiangiogenic properties

The interferon (IFN)–inducible chemokines, specifically, IFN-γ–inducible protein-10 (IP-10), monokine induced by IFN-γ (Mig), and IFN-inducible T-cell α-chemoattractant (I-TAC), share a unique CXC chemokine receptor (CXCR3). Recently, the highly specific membrane-bound protease and lymphocyte surfac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2001-12, Vol.98 (13), p.3554-3561
Hauptverfasser: Proost, Paul, Schutyser, Evemie, Menten, Patricia, Struyf, Sofie, Wuyts, Anja, Opdenakker, Ghislain, Detheux, Michel, Parmentier, Marc, Durinx, Christine, Lambeir, Anne-Marie, Neyts, Johan, Liekens, Sandra, Maudgal, Prabhat C., Billiau, Alfons, Van Damme, Jo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The interferon (IFN)–inducible chemokines, specifically, IFN-γ–inducible protein-10 (IP-10), monokine induced by IFN-γ (Mig), and IFN-inducible T-cell α-chemoattractant (I-TAC), share a unique CXC chemokine receptor (CXCR3). Recently, the highly specific membrane-bound protease and lymphocyte surface marker CD26/dipeptidyl peptidase IV (DPP IV) was found to be responsible for posttranslational processing of chemokines. Removal of NH2-terminal dipeptides by CD26/DPP IV alters chemokine receptor binding and signaling, and hence inflammatory and anti–human immunodeficiency virus (HIV) activities. CD26/DPP IV and CXCR3 are both markers for Th1 lymphocytes and, moreover, CD26/DPP IV is present in a soluble, active form in human plasma. This study reports that at physiologic enzyme concentrations CD26/DPP IV cleaved 50% of I-TAC within 2 minutes, whereas for IP-10 and Mig the kinetics were 3- and 10-fold slower, respectively. Processing of IP-10 and I-TAC by CD26/DPP IV resulted in reduced CXCR3-binding properties, loss of calcium-signaling capacity through CXCR3, and more than 10-fold reduced chemotactic potency. Moreover, IP-10 and I-TAC cleaved by CD26/DPP IV acted as chemotaxis antagonists and CD26/DPP IV–truncated IP-10 and Mig retained their ability to inhibit the angiogenic activity of interleukin-8 in the rabbit cornea micropocket model. These data demonstrate a negative feedback regulation by CD26/DPP IV in CXCR3-mediated chemotaxis without affecting the angiostatic potential of the CXCR3 ligands IP-10 and Mig.
ISSN:0006-4971
1528-0020
DOI:10.1182/blood.V98.13.3554