Human prolactin (hPRL) antagonists inhibit hPRL-activated signaling pathways involved in breast cancer cell proliferation

The involvement of human prolactin (hPRL) in breast cancer has been recently reconsidered based on its autocrine/paracrine proliferative effect described in human mammary tumor epithelial cells. Therefore, there is growing interest in the development of potent hPRL antagonists that may inhibit this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2000-09, Vol.19 (41), p.4695-4705
Hauptverfasser: LLOVERA, Marta, PICHARD, Caroline, BERNICHTEIN, Sophie, JEAY, Sébastien, TOURAINE, Philippe, KELLY, Paul A, GOFFIN, Vincent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The involvement of human prolactin (hPRL) in breast cancer has been recently reconsidered based on its autocrine/paracrine proliferative effect described in human mammary tumor epithelial cells. Therefore, there is growing interest in the development of potent hPRL antagonists that may inhibit this effect. We previously designed hPRL analogs displaying antagonistic properties in a human transcriptional bioassay. We now report that the most potent of those analogs, G129R-hPRL, antagonizes all hPRL-induced effects analysed in various breast cancer cell lines, including cell proliferation. The analog per se lacks intrinsic agonistic activity on PRL receptor-activated signaling cascades, cell proliferation and apoptosis, indicating that its mode of action only occurs through competitive inhibition of hPRL. We provide some molecular basis of this antagonistic effect by demonstrating that G129R-hPRL competitively inhibits hPRL-activation of the JAK-STAT and MAPK pathways, two signaling cascades involved in the mitogenic effect of hPRL in mammary epithelial cells. This competitive inhibition persists for at least 48 h, as evidenced by long term analysis of STAT5b activation or of progression through cell cycle. These results are the first demonstration at the molecular level that hPRL antagonists interfering with receptor dimerization disrupt signaling events in breast cancer cells, which prevents hPRL-induced cell proliferation.
ISSN:0950-9232
1476-5594
DOI:10.1038/sj.onc.1203846