Electroreception in Gymnotus carapo: pre-receptor processing and the distribution of electroreceptor types

This paper describes the peripheral mechanisms involved in signal processing of self- and conspecific-generated electric fields by the electric fish Gymnotus carapo. The distribution of the different types of tuberous electroreceptor and the occurrence of particular electric field patterns close to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental biology 2000-11, Vol.203 (Pt 21), p.3279-3287
Hauptverfasser: Castelló, M E, Aguilera, P A, Trujillo-Cenóz, O, Caputi, A A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper describes the peripheral mechanisms involved in signal processing of self- and conspecific-generated electric fields by the electric fish Gymnotus carapo. The distribution of the different types of tuberous electroreceptor and the occurrence of particular electric field patterns close to the body of the fish were studied. The density of tuberous electroreceptors was found to be maximal on the jaw (foveal region) and very high on the dorsal region of the snout (parafoveal region), decaying caudally. Tuberous type II electroreceptors were much more abundant than type I electroreceptors. Type I electroreceptors occurred exclusively on the head and rostral trunk regions, while type II electroreceptors were found along as much as 90 % of the fish. Electrophysiological data indicated that conspecific- and self-generated electric currents are 'funnelled' by the high conductivity and geometry of the body of the fish. These currents are concentrated at the peri-oral zone, where most electroreceptors are located. Moreover, within this region, field vector directions were collimated, constituting the most efficient stimulus for electroreceptors. It can be concluded that the passive properties of the fish tissue represent a pre-receptor device that enhances exafferent and reafferent electrical signals at the fovea-parafoveal region.
ISSN:0022-0949
1477-9145
DOI:10.1242/jeb.203.21.3279