Sequence Analysis of VP4 and VP7 Genes of Nontypeable Strains Identifies a New Pair of Outer Capsid Proteins Representing Novel P and G Genotypes in Bovine Rotaviruses

During a limited epidemiological study, the serotype specificities of several isolates of bovine rotavirus, exhibiting identical electropherotypes, from a single cattle farm near Bangalore, India, could not be determined using a panel of serotyping monoclonal antibodies (MAbs) specific for G serotyp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Virology (New York, N.Y.) N.Y.), 2000-10, Vol.276 (1), p.104-113
Hauptverfasser: Rao, C.Durga, Gowda, Krishne, Reddy, B.S.Yugandhar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:During a limited epidemiological study, the serotype specificities of several isolates of bovine rotavirus, exhibiting identical electropherotypes, from a single cattle farm near Bangalore, India, could not be determined using a panel of serotyping monoclonal antibodies (MAbs) specific for G serotypes 1–6 and 10. To determine the genotypes of these isolates, the nucleotide sequences of the genes encoding the outer capsid proteins VP4 and VP7 of two representative isolates, Hg18 and Hg23, were determined. The corresponding gene sequences from the two isolates were identical, indicating that these isolates represented a single strain of bovine rotavirus. Comparison of the VP4 nucleotide (nt) and the deduced amino acid (aa) sequences with those of several human and animal rotavirus strains representing all of the currently recognized 20 different VP4 (P) genotypes revealed low nt and aa sequence identities of 61.0 to 74.2% and 57.9 to 78.2% for VP4. The percentages of amino acid homology for the VP8* and VP5* regions of VP4 were 37.7 to 67.9 and 68.1 to 84.2%, respectively. The nt and aa sequences of the VP7 gene were also distinct from those of human and animal strains belonging to the previously established 14 VP7(G) serotypes (65.9 to 75.5% nt and 59.5 to 77.6% aa identities). These findings suggest the classification of the VP4 and VP7 genes of the bovine isolates represented by Hg18 as new P and G genotypes and provide further evidence for the vast genetic/antigenic diversity of group A rotaviruses.
ISSN:0042-6822
1096-0341
DOI:10.1006/viro.2000.0472