Differentiation commitment and regulator-specific granulocyte-macrophage maturation in a novel pro-B murine leukemic cell line
The cloned pro-B-lymphocyte murine leukemic cell line GB2, was established from a leukemic Max41 x Emu-myc double transgenic mouse. Its Igh alleles are rearranged and its surface markers are primarily B-lymphoid, but a small proportion of the cells also express surface Gr-1 and some cells develop th...
Gespeichert in:
Veröffentlicht in: | Leukemia 2000-10, Vol.14 (10), p.1785-1795 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The cloned pro-B-lymphocyte murine leukemic cell line GB2, was established from a leukemic Max41 x Emu-myc double transgenic mouse. Its Igh alleles are rearranged and its surface markers are primarily B-lymphoid, but a small proportion of the cells also express surface Gr-1 and some cells develop the morphology of maturing granulocytes. The cell line grows continuously in suspension culture without the addition of growth factors, but expresses mRNA for M-CSF, TPO and Flt-3-ligand. When stimulated in agar cultures by GM-CSF, G-CSF, M-CSF, IL-3, SCF, IL-6, leukemia inhibitory factor (LIF), IL-5 or IFNgamma, GB2 cells generated blast colonies or colonies of maturing granulocytes and macrophages. There was a striking similarity in colony types, relative colony numbers and maturation of colony cells to those formed by normal bone marrow cells in response to the same stimuli. GB2 blast colony-forming cells exhibited self-renewal as well as an ability to form granulocyte-macrophage colony-forming progeny, with evidence that a hierarchical sequence of clonogenic cells is generated in the cell line even after subcloning. Factor-specific maturation was clearly initiated by the action of the added growth factors. In contrast, FACS-sorting experiments showed that commitment to various types of colony-forming cell occurs in maintenance suspension cultures in the apparent absence of potentially relevant growth factors. |
---|---|
ISSN: | 0887-6924 1476-5551 |
DOI: | 10.1038/sj.leu.2401931 |