Circulating microparticles from patients with myocardial infarction cause endothelial dysfunction

Shed membrane microparticles circulate in the peripheral blood of nonischemic (NI) patients and patients with myocardial infarction (MI). We investigated whether or not these microparticles would affect endothelium-dependent responses. Rat aortic rings with endothelium were exposed for 24 hours to c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation (New York, N.Y.) N.Y.), 2001-11, Vol.104 (22), p.2649-2652
Hauptverfasser: BOULANGER, Chantal M, SCOAZEC, Alexandra, EBRAHIMIAN, Talin, HENRY, Patrick, MATHIEU, Eric, TEDGUI, Alain, MALLAT, Ziad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Shed membrane microparticles circulate in the peripheral blood of nonischemic (NI) patients and patients with myocardial infarction (MI). We investigated whether or not these microparticles would affect endothelium-dependent responses. Rat aortic rings with endothelium were exposed for 24 hours to circulating microparticles isolated from 7 patients with NI syndromes and 19 patients with acute MI. Endothelium-dependent relaxations to acetylcholine were not affected by high concentrations of microparticles from NI patients (P=0.80). However, significant impairment was observed in preparations exposed to microparticles from patients with MI at low and high concentrations, corresponding to 0.7-fold and 2-fold circulating plasma levels (P=0.05 and 0.001, respectively). Impairment was not affected by diclofenac (P=0.47), nor by the cell-permeable superoxide dismutase mimetic Mn(III)tetra(4-benzoic acid) porphyrin chloride (P=0.33), but it was abolished by endothelium removal or by N(omega)monomethyl-L-arginine. Relaxations to the calcium ionophore ionomycin were decreased in rings exposed to microparticles from MI patients (P=0.05 and 0.009 for low and high concentrations, respectively), but microparticles from NI patients had no effect (P=0.81). Finally, high concentrations of microparticles from MI patients affected neither endothelium-independent relaxation to sodium nitroprusside (P=0.59) nor expression of the endothelial nitric oxide synthase (P=0.43). Circulating microparticles from patients with MI selectively impair the endothelial nitric oxide transduction pathway and, therefore, could contribute to the general vasomotor dysfunction observed after MI, even in angiographically normal arteries.
ISSN:0009-7322
1524-4539
DOI:10.1161/hc4701.100516