Thirteen novel mutations of the replicated region of PKD1 in an Asian population
Thirteen novel mutations of the replicated region of PKD1 in an Asian population. Mutations of PKD1 are thought to account for approximately 85% of all mutations in autosomal dominant polycystic kidney disease (ADPKD). The search for PKD1 mutations has been hindered by both its large size and compli...
Gespeichert in:
Veröffentlicht in: | Kidney international 2000-10, Vol.58 (4), p.1400-1412 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Thirteen novel mutations of the replicated region of PKD1 in an Asian population.
Mutations of PKD1 are thought to account for approximately 85% of all mutations in autosomal dominant polycystic kidney disease (ADPKD). The search for PKD1 mutations has been hindered by both its large size and complicated genomic structure. To date, few mutations that affect the replicated segment of PKD1 have been described, and virtually all have been reported in Caucasian patients.
In the present study, we have used a long-range polymerase chain reaction (PCR)-based strategy previously developed by our laboratory to analyze exons in the replicated region of PKD1 in a population of 41 unrelated Thai and 6 unrelated Korean families with ADPKD. We have amplified approximately 3.5 and approximately 5kb PKD1 gene-specific fragments (5′MR and 5′LR) containing exons 13 to 15 and 15 to 21 and performed single-stand conformation analysis (SSCA) on nested PCR products.
Nine novel pathogenic mutations were detected, including six nonsense and three frameshift mutations. One of the deletions was shown to be a de novo mutation. Four potentially pathogenic variants, including one 3bp insertion and three missense mutations, were also discovered. Two of the nonconservative amino acid substitutions were predicted to disrupt the three-dimensional structure of the PKD repeats. In addition, six polymorphisms, including two missense and four silent nucleotide substitutions, were identified. Approximately 25% of both the pathogenic and normal variants were found to be present in at least one of the homologous loci.
To our knowledge, this is the first report of mutation analysis of the replicated region of PKD1 in a non-Caucasian population. The methods used in this study are widely applicable and can be used to characterize PKD1 in a number of ethnic groups using DNA samples prepared using standard techniques. Our data suggest that gene conversion may play a significant role in producing variability of the PKD1 sequence in this population. The identification of additional mutations will help guide the study of polycystin-1 and better help us to understand the pathophysiology of this common disease. |
---|---|
ISSN: | 0085-2538 1523-1755 |
DOI: | 10.1046/j.1523-1755.2000.00302.x |