Activity of 2-Substituted Lysophosphatidic Acid (LPA) Analogs at LPA Receptors: Discovery of a LPA1/LPA3 Receptor Antagonist

The physiological implications of lysophosphatidic acid occupancy of individual receptors are largely unknown because selective agonists/antagonists are unavailable currently. The molecular cloning of three high-affinity lysophosphatidic acid receptors, LPA1, LPA2, and LPA3, provides a platform for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular pharmacology 2001-12, Vol.60 (6), p.1173-1180
Hauptverfasser: Heise, Christopher E., Santos, Webster L., Schreihofer, Ann M., Heasley, Brian H., Mukhin, Yurii V., Macdonald, Timothy L., Lynch, Kevin R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The physiological implications of lysophosphatidic acid occupancy of individual receptors are largely unknown because selective agonists/antagonists are unavailable currently. The molecular cloning of three high-affinity lysophosphatidic acid receptors, LPA1, LPA2, and LPA3, provides a platform for developing receptor type-selective ligands. Starting with an N-acyl ethanolamide phosphate LPA analog, we made a series of substitutions at the second carbon to generate compounds with varying spatial, stereochemical, and electronic characteristics. Analysis of this series at each recombinant LPA receptor using a guanosine 5′-O-(3-[35S]thio)triphosphate (GTP[γ35S]) binding assay revealed sharp differences in activity. Our results suggest that these receptors have one spatially restrictive binding pocket that interacts with the 2-substituted moieties and prefers small hydrophobic groups and hydrogen bonding functionalities. The agonist activity predicted by the GTP[γ35S] binding assay was reflected in the activity of a subset of compounds in increasing arterial pressure in anesthetized rats. One compound with a bulky hydrophobic group (VPC12249) was a dual LPA1/LPA3 competitive antagonist. Several compounds that had smaller side chains were found to be LPA1-selective agonists.
ISSN:0026-895X
DOI:10.1124/mol.60.6.1173