Effects of antidepressants on gamma-aminobutyric acid- and N-methyl-D-aspartate-induced intracellular Ca(2+) concentration increases in primary cultured rat cortical neurons

We investigated the effects of antidepressants on the intracellular Ca2+ concentration ([Ca2+]i) increases induced by gamma-aminobutyric acid (GABA) or N-methyl-D-aspartate (NMDA) in primary cultured rat cortical neurons using fluorescence imaging. Acute treatment with imipramine inhibited GABA- and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuropsychobiology 2000, Vol.42 (3), p.120-126
Hauptverfasser: Takebayashi, M, Kagaya, A, Inagaki, M, Kozuru, T, Jitsuiki, H, Kurata, K, Okamoto, Y, Yamawaki, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigated the effects of antidepressants on the intracellular Ca2+ concentration ([Ca2+]i) increases induced by gamma-aminobutyric acid (GABA) or N-methyl-D-aspartate (NMDA) in primary cultured rat cortical neurons using fluorescence imaging. Acute treatment with imipramine inhibited GABA- and NMDA-induced increases in [Ca2+]i in a concentration-dependent manner. Doses of 30 microM clomipramine, desipramine, amoxapine and maprotiline also inhibited both the GABA- and NMDA-induced [Ca2+]i increases significantly. Both inhibitory effects of the five major antidepressants on the GABA- or the NMDA-induced [Ca2+]i increases were well-correlated. Imipramine could inhibit significantly high-K+-induced [Ca2+]i increases. Our previous study has already shown that the GABA-induced [Ca2+]i increase involves a similar pathway to high-K+-induced Ca2+ influx. In conclusion, imipramine and several other antidepressants have acute inhibitory effects on the GABA-, NMDA- and high-K+-induced [Ca2+]i increases, suggesting that these inhibitory effects are not related to specific receptors. One possibility is that these effects may be commonly mediated via part of the high-K+-induced [Ca2+]i pathway.
ISSN:0302-282X
DOI:10.1159/000026681