Tolerance for ATP-insensitive K(ATP) channels in transgenic mice

To examine the role of sarcolemmal K(ATP) channels in cardiac function, we generated transgenic mice expressing GFP-tagged Kir6.2 subunits with reduced ATP sensitivity under control of the cardiac alpha-myosin heavy chain promoter. Four founder mice were isolated, and both founders and progeny were...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation research 2001-11, Vol.89 (11), p.1022-1029
Hauptverfasser: Koster, J C, Knopp, A, Flagg, T P, Markova, K P, Sha, Q, Enkvetchakul, D, Betsuyaku, T, Yamada, K A, Nichols, C G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To examine the role of sarcolemmal K(ATP) channels in cardiac function, we generated transgenic mice expressing GFP-tagged Kir6.2 subunits with reduced ATP sensitivity under control of the cardiac alpha-myosin heavy chain promoter. Four founder mice were isolated, and both founders and progeny were all apparently normal and fertile. Electrocardiograms from conscious animals also appeared normal, although mean 24-hour heart rate was approximately 10% lower in transgenic animals compared with littermate controls. In excised membrane patches, K(ATP) channels were very insensitive to inhibitory ATP: mean K(1/2) ([ATP] causing half-maximal inhibition) was 2.7 mmol/L in high-expressing line 4 myocytes, compared with 51 micromol/L in littermate control myocytes. Counterintuitively, K(ATP) channel density was approximately 4-fold lower in transgenic membrane patches than in control. This reduction of total K(ATP) conductance was confirmed in whole-cell voltage-clamp conditions, in which K(ATP) was activated by metabolic inhibition. K(ATP) conductance was not obvious after break-in of either control or transgenic myocytes, and there was no action potential shortening in transgenic myocytes. In marked contrast to the effects of expression of similar transgenes in pancreatic beta-cells, these experiments demonstrate a profound tolerance for reduced ATP sensitivity of cardiac K(ATP) channels and highlight differential effects of channel activity in the electrical activity of the 2 tissues.
ISSN:0009-7330
1524-4571