Thrombin Induces NO Release from Cultured Rat Microglia via Protein Kinase C, Mitogen-activated Protein Kinase, and NF-κB
Microglia, brain resident macrophages, become activated in brains injured due to trauma, ischemia, or neurodegenerative diseases. In this study, we found that thrombin treatment of microglia induced NO release/inducible nitric-oxide synthase expression, a prominent marker of activation. The effect o...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2000-09, Vol.275 (39), p.29955-29959 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microglia, brain resident macrophages, become activated in brains injured due to trauma, ischemia, or neurodegenerative diseases. In this study, we found that thrombin treatment of microglia induced NO release/inducible nitric-oxide synthase expression, a prominent marker of activation. The effect of thrombin on NO release increased dose-dependently within the range of 5–20 units/ml. In immunoblot analyses, inducible nitric-oxide synthase expression was detected within 9 h after thrombin treatment. This effect of thrombin was significantly reduced by protein kinase C inhibitors, such as Go6976, bisindolylmaleimide, and Ro31-8220. Within 15 min, thrombin activated three subtypes of mitogen-activated protein kinases: extracellular signal-regulated kinase, p38, and c-Jun N-terminal kinase/stress-activated protein kinase. Inhibition of the extracellular signal-regulated kinase pathway and p38 reduced the NO release of thrombin-treated microglia. Thrombin also activated nuclear factor κB (NF-κB) within 5 min, and N-acetyl cysteine, an inhibitor of NF-κB, reduced NO release. However, thrombin receptor agonist peptide (an agonist of protease activated receptor-1 (PAR-1)), could not mimic the effect of thrombin, and cathepsin G, a PAR-1 inhibitor, did not reduce the effect of thrombin. These results suggest that thrombin can activate microglia via protein kinase C, mitogen-activated protein kinases, and NF-κB but that this occurs independently of PAR-1. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M001220200 |