Simulation of electrophoretic separations by the flux-corrected transport method
Electrophoretic separations at typical experimental electric field strengths have been simulated by applying the flux-corrected transport (FCT) finite difference method to the transient, one-dimensional electrophoresis model. The performance of FCT on simulations of zone electrophoresis (ZE), isotac...
Gespeichert in:
Veröffentlicht in: | Journal of Chromatography A 2000-08, Vol.890 (2), p.321-336 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electrophoretic separations at typical experimental electric field strengths have been simulated by applying the flux-corrected transport (FCT) finite difference method to the transient, one-dimensional electrophoresis model. The performance of FCT on simulations of zone electrophoresis (ZE), isotachophoresis (ITP), and isoelectric focusing (IEF) has been evaluated. An FCT algorithm, with a three-point, central spatial discretization, yields numerical solutions without numerical oscillations or spurious peaks, which have plagued previously-published second-order solutions to benchmark ZE and ITP problems. Moreover, the FCT technique captures sharp zone boundaries and IEF peaks more accurately than previously-published, first-order upwind schemes. |
---|---|
ISSN: | 0021-9673 |
DOI: | 10.1016/S0021-9673(00)00500-8 |