Phospholipase C activation by anesthetics decreases membrane-cytoskeleton adhesion

Many different amphiphilic compounds cause an increase in the fluid-phase endocytosis rates of cells in parallel with a decrease in membrane-cytoskeleton adhesion. These compounds, however, do not share a common chemical structure, which leaves the mechanism and even site of action unknown. One poss...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cell science 2001-10, Vol.114 (Pt 20), p.3759-3766
Hauptverfasser: Raucher, D, Sheetz, M P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many different amphiphilic compounds cause an increase in the fluid-phase endocytosis rates of cells in parallel with a decrease in membrane-cytoskeleton adhesion. These compounds, however, do not share a common chemical structure, which leaves the mechanism and even site of action unknown. One possible mechanism of action is through an alteration of inositol lipid metabolism by modifying the cytoplasmic surface of the plasma membrane bilayer. By comparing permeable amphiphilic amines used as local anesthetics with their impermeable analogs, we find that access to the cytoplasmic surface is necessary to increase endocytosis rate and decrease membrane-cytoskeleton adhesion. In parallel, we find that the level of phosphatidylinositol 4,5-bisphosphate (PIP(2)) in the plasma membrane is decreased and cytoplasmic Ca(2+) is increased only by permeable amines. The time course of both the decrease in plasma membrane PIP(2) and the rise in Ca(2+) parallels the decrease in cytoskeleton-membrane adhesion. Inositol labeling shows that phosphatidylinositol-4-phosphate levels are increased by the permeable anesthetics, indicating that lipid turnover is increased. Consistent with previous observations, phospholipase C (PLC) inhibitors block anesthetic effects on the PIP(2) and cytoplasmic Ca(2+) levels, as well as the drop in adhesion. Therefore, we suggest that PLC activity is increased by amine anesthetics at the cytoplasmic surface of the plasma membrane, which results in a decrease in membrane-cytoskeleton adhesion.
ISSN:0021-9533
1477-9137
DOI:10.1242/jcs.114.20.3759