Blue Light Drives B-Side Electron Transfer in Bacterial Photosynthetic Reaction Centers
The core of the photosynthetic reaction center from the purple non-sulfur bacterium Rhodobacter sphaeroides is a quasi-symmetric heterodimer, providing two potential pathways for transmembrane electron transfer. Past measurements have demonstrated that only one of the two pathways (the A-side) is us...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2001-11, Vol.40 (46), p.13767-13773 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The core of the photosynthetic reaction center from the purple non-sulfur bacterium Rhodobacter sphaeroides is a quasi-symmetric heterodimer, providing two potential pathways for transmembrane electron transfer. Past measurements have demonstrated that only one of the two pathways (the A-side) is used to any significant extent upon excitation with red or near-infrared light. Here, it is shown that excitation with blue light into the Soret band of the reaction center gives rise to electron transfer along the alternate or B-side pathway, resulting in a charge-separated state involving the anion of the B-side bacteriopheophytin. This electron transfer is much faster than normal A-side transfer, apparently occurring within a few hundred femtoseconds. At low temperatures, the B-side charge-separated state is stable for at least 1 ns, but at room temperature, the B-side bacteriopheophytin anion is short-lived, decaying within ∼15 ps. One possible physiological role for B-side electron transfer is photoprotection, rapidly quenching higher excited states of the reaction center. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi015612q |