Amlodipine inhibits thapsigargin-sensitive CA(2+) stores in thrombin-stimulated vascular smooth muscle cells
Ca(2+) channel blockers, such as amlodipine, inhibit vascular smooth muscle cell (VSMC) growth through interactions with targets other than L-type Ca(2+) channels. The effects of amlodipine on Ca(2+) movements in thrombin- and thapsigargin-stimulated VSMCs were therefore investigated by determining...
Gespeichert in:
Veröffentlicht in: | American journal of physiology. Heart and circulatory physiology 2000-09, Vol.279 (3), p.H1220-H1227 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ca(2+) channel blockers, such as amlodipine, inhibit vascular smooth muscle cell (VSMC) growth through interactions with targets other than L-type Ca(2+) channels. The effects of amlodipine on Ca(2+) movements in thrombin- and thapsigargin-stimulated VSMCs were therefore investigated by determining the variations of intracellular free Ca(2+) concentration in fura 2-loaded cultured VSMCs. Results indicated that 10-1,000 nM amlodipine inhibited 1) thrombin-induced Ca(2+) mobilization from a thapsigargin-sensitive pool and 2) thapsigargin-induced Ca(2+) responses, including Ca(2+) mobilization from internal stores and store-operated Ca(2+) entry. These effects of amlodipine do not involve L-type Ca(2+) channels and could not be reproduced with 100 nM isradipine, diltiazem, or verapamil. The inhibition by amlodipine of Ca(2+) mobilization appears therefore to be a specific property of the drug, in addition to its Ca(2+) channel-blocking property. It is suggested that amlodipine acts in this capacity by interacting with Ca(2+)-ATPases of the sarcoplasmic reticulum, thus modulating the enzyme activity. This mechanism might participate in the inhibitory effect of amlodipine on VSMC growth. |
---|---|
ISSN: | 0363-6135 |
DOI: | 10.1152/ajpheart.2000.279.3.h1220 |