Antibiotic Susceptibility of Escherichia coli dnaK and dnaJ Mutants

The role of two chaperone proteins, DnaK and the cooperating factor DnaJ, in Escherichia coli antibiotic susceptibility to three antibiotics (a β-lactam, chloramphenicol, tetracycline) has been studied. It was found that null dnaJ and dnaKdnaJ mutants are impaired in the functions leading to antibio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbial drug resistance (Larchmont, N.Y.) N.Y.), 2000-06, Vol.6 (2), p.119-126
Hauptverfasser: Wolska, Krystyna I., Bugajska, Edyta, Jurkiewicz, Dorota, Ku, Mariusz, Jó wik, Anna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The role of two chaperone proteins, DnaK and the cooperating factor DnaJ, in Escherichia coli antibiotic susceptibility to three antibiotics (a β-lactam, chloramphenicol, tetracycline) has been studied. It was found that null dnaJ and dnaKdnaJ mutants are impaired in the functions leading to antibiotic susceptibility. The secretion of β-lactamase to the periplasmic space is diminished in both mutants, and the additive effect of the two mutations was observed. The activity of chloramphenicol acetyltransferase is also impaired in an additive manner in both mutant strains. Tetracycline uptake is changed only in the double deletion mutant. These defects were observed only during incubation at high temperature (42°C). Efficient complementation of some of these defects by the wild-type alleles introduced on low-copy number plasmid was achieved. Minimal inhibitory concentrations and the titer of the wild-type strains, ΔdnaJ and ΔdnaKdnaJ mutants treated with ampicillin, chloramphenicol, and tetracycline were also determined. Higher susceptibility of both mutants to chloramphenicol and tetracycline, as compared to their wild-type parent, was observed only after 1 h preincubation of cultures at 42°C. On the contrary, both mutants were less susceptible to ampicillin than their parent strain.
ISSN:1076-6294
1931-8448
DOI:10.1089/107662900419429