Transforming growth factor inhibits erythropoiesis by blocking proliferation and accelerating differentiation of erythroid progenitors

Erythropoiesis is positively regulated by stem cell factor, interleukin 3, and erythropoietin, which synergize to allow the production of hemoglobinized red blood cells from erythroid progenitors. In contrast, interferon γ, tumor necrosis factor α, and transforming growth factor B 1, (TGF-β 1) are p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental hematology 2000-08, Vol.28 (8), p.885-894
Hauptverfasser: Zermati, Yael, Fichelson, Serge, Valensi, Françoise, Freyssinier, Jean Marc, Rouyer-Fessard, Philippe, Cramer, Elizabeth, Guichard, Josette, Varet, Bruno, Hermine, Olivier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Erythropoiesis is positively regulated by stem cell factor, interleukin 3, and erythropoietin, which synergize to allow the production of hemoglobinized red blood cells from erythroid progenitors. In contrast, interferon γ, tumor necrosis factor α, and transforming growth factor B 1, (TGF-β 1) are powerful inhibitors of erythropoiesis. Interferon γ and α act principally by inducing apoptosis. The aim of this study was to elucidate the mechanisms by which TGF-β 1 inhibits erythropoiesis. We used an in vitro serum-free system of human red blood cell production. From a virtually pure population of CD36 + erythroid progenitors, stem cell factor, interleukin 3, and erythropoietin allowed massive proliferation (×300) and promoted terminal red blood cell differentiation. We show here that TGF-β 1 (2 ng/mL) inhibited the growth of CD36 + cells by 15-fold. TGF-β 1 markedly accelerated and increased erythroid differentiation as assessed by hemoglobin and glycophorin expression. Furthermore, May-Grünwald-Giemsa staining and ultrastructural analysis revealed that TGF-β 1 induced full differentiation toward normal enucleated red cells even in the absence of macrophages. This acceleration of erythroid differentiation did not modify the pattern of hemoglobin chains expression from adult or fetal erythroid progenitors. Analysis of apoptosis, cell cycle and Ki-67 expression showed that TGF-β 1 inhibited cell proliferation by decreasing the cycle of immature erythroid cells and accelerating maturation toward orthochromatic normoblasts that are not in cycle. We showed that TGF-β 1 is a paradoxical inhibitor of erythropoiesis that acts by blocking proliferation and accelerating differentiation of erythroid progenitors.
ISSN:0301-472X
1873-2399
DOI:10.1016/S0301-472X(00)00488-4