Insulin increases plasma membrane content and reduces phosphorylation of Na(+)-K(+) pump alpha(1)-subunit in HEK-293 cells
Insulin stimulates K(+) uptake and Na(+) efflux via the Na(+)-K(+) pump in kidney, skeletal muscle, and brain. The mechanism of insulin action in these tissues differs, in part, because of differences in the isoform complement of the catalytic alpha-subunit of the Na(+)-K(+) pump. To analyze specifi...
Gespeichert in:
Veröffentlicht in: | American Journal of Physiology: Cell Physiology 2001-12, Vol.281 (6), p.C1797-C1803 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Insulin stimulates K(+) uptake and Na(+) efflux via the Na(+)-K(+) pump in kidney, skeletal muscle, and brain. The mechanism of insulin action in these tissues differs, in part, because of differences in the isoform complement of the catalytic alpha-subunit of the Na(+)-K(+) pump. To analyze specifically the effect of insulin on the alpha(1)-isoform of the pump, we have studied human embryonic kidney (HEK)-293 cells stably transfected with the rat Na(+)-K(+) pump alpha(1)-isoform tagged on its first exofacial loop with a hemagglutinin (HA) epitope. The plasma membrane content of alpha(1)-subunits was quantitated by binding a specific HA antibody to intact cells. Insulin rapidly increased the number of alpha(1)-subunits at the cell surface. This gain was sensitive to the phosphatidylinositol (PI) 3-kinase inhibitor wortmannin and to the protein kinase C (PKC) inhibitor bisindolylmaleimide. Furthermore, the insulin-stimulated gain in surface alpha-subunits correlated with an increase in the binding of an antibody that recognizes only the nonphosphorylated form of alpha(1) (at serine-18). These results suggest that insulin regulates the Na(+)-K(+) pump in HEK-293 cells, at least in part, by decreasing serine phosphorylation and increasing plasma membrane content of alpha(1)-subunits via a signaling pathway involving PI 3-kinase and PKC. |
---|---|
ISSN: | 0363-6143 |
DOI: | 10.1152/ajpcell.2001.281.6.C1797 |