Ocular cell transfection with the human basic fibroblast growth factor gene delays photoreceptor cell degeneration in RCS rats
Based on the K8/JTS-1-mediated transfection technique, we developed an in vivo protocol for an efficient transfer of plasmid DNA to ocular cells. As determined with condensed plasmids containing reporter genes for either beta-galactosidase (pcDNA-lacZ) or enhanced green fluorescent protein (pREP-EGF...
Gespeichert in:
Veröffentlicht in: | Human gene therapy 2000-09, Vol.11 (13), p.1875-1890 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Based on the K8/JTS-1-mediated transfection technique, we developed an in vivo protocol for an efficient transfer of plasmid DNA to ocular cells. As determined with condensed plasmids containing reporter genes for either beta-galactosidase (pcDNA-lacZ) or enhanced green fluorescent protein (pREP-EGFP), the immortalized human retinal epithelial cells RPE D407 and human embryonic kidney 293 cells can be transfected with typical efficiencies of 11 and 19%, respectively. Unlike 293 cells, RPE D407 cells had a reduced viability on transfection with both plasmids. In vivo, subretinal injections of DNA-K8/JTS-1 complexes revealed reporter gene expression in choroidal and RPE cells of normal pink-eyed Royal College of Surgeons (RCS) rats. The validity of this transfection technique in terms of retinal cell survival in RCS rats was then examined by using pREP-hFGF2 plasmid, which encodes the human basic fibroblast growth factor isoforms (hFGF2). Subretinal injection of pREP-hFGF2-K8/JTS-1 complexes into 3-week-old dystrophic RCS rat eyes reveals a delayed photoreceptor cell degeneration 60 days postinjection. In this case, the average analyzed field points with delayed cell dystrophy represent 14 to 17% of the retinal surface as compared with 2.6 and 4% in pREP5beta and vehicle-injected eyes, respectively. Peptide-mediated in oculo transfection thus appears to be a promising technique for the treatment of retinal cell and photoreceptor degenerations. |
---|---|
ISSN: | 1043-0342 1557-7422 |
DOI: | 10.1089/10430340050129495 |