BFIT, a unique acyl-CoA thioesterase induced in thermogenic brown adipose tissue: cloning, organization of the human gene and assessment of a potential link to obesity

We hypothesized that certain proteins encoded by temperature-responsive genes in brown adipose tissue (BAT) contribute to the remarkable metabolic shifts observed in this tissue, thus prompting a differential mRNA expression analysis to identify candidates involved in this process in mouse BAT. An m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical journal 2001-11, Vol.360 (Pt 1), p.135-142
Hauptverfasser: Adams, S H, Chui, C, Schilbach, S L, Yu, X X, Goddard, A D, Grimaldi, J C, Lee, J, Dowd, P, Colman, S, Lewin, D A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We hypothesized that certain proteins encoded by temperature-responsive genes in brown adipose tissue (BAT) contribute to the remarkable metabolic shifts observed in this tissue, thus prompting a differential mRNA expression analysis to identify candidates involved in this process in mouse BAT. An mRNA species corresponding to a novel partial-length gene was found to be induced 2-3-fold above the control following cold exposure (4 degrees C), and repressed approximately 70% by warm acclimation (33 degrees C, 3 weeks) compared with controls (22 degrees C). The gene displayed robust BAT expression (i.e. approximately 7-100-fold higher than other tissues in controls). The full-length murine gene encodes a 594 amino acid ( approximately 67 kDa) open reading frame with significant homology to the human hypothetical acyl-CoA thioesterase KIAA0707. Based on cold-inducibility of the gene and the presence of two acyl-CoA thioesterase domains, we termed the protein brown-fat-inducible thioesterase (BFIT). Subsequent analyses and cloning efforts revealed the presence of a novel splice variant in humans (termed hBFIT2), encoding the orthologue to the murine BAT gene. BFIT was mapped to syntenic regions of chromosomes 1 (human) and 4 (mouse) associated with body fatness and diet-induced obesity, potentially linking a deficit of BFIT activity with exacerbation of these traits. Consistent with this notion, BFIT mRNA was significantly higher ( approximately 1.6-2-fold) in the BAT of obesity-resistant compared with obesity-prone mice fed a high-fat diet, and was 2.5-fold higher in controls compared with ob/ob mice. Its strong, cold-inducible BAT expression in mice suggests that BFIT supports the transition of this tissue towards increased metabolic activity, probably through alteration of intracellular fatty acyl-CoA concentration.
ISSN:0264-6021
1470-8728
DOI:10.1042/bj3600135