Properties of Small Molecules Affecting Insulin Receptor Function

Small molecules with insulin mimetic effects and oral availability are of interest for potential substitution of insulin injections in the treatment of diabetes. We have searched databases for compounds capable of mimicking one epitope of the insulin molecule known to be involved in binding to the i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2001-11, Vol.40 (45), p.13520-13528
Hauptverfasser: Schlein, Morten, Ludvigsen, Svend, Olsen, Helle B, Andersen, Asser S, Danielsen, Gillian M, Kaarsholm, Niels C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Small molecules with insulin mimetic effects and oral availability are of interest for potential substitution of insulin injections in the treatment of diabetes. We have searched databases for compounds capable of mimicking one epitope of the insulin molecule known to be involved in binding to the insulin receptor (IR). This approach identifies thymolphthalein, which is an apparent weak agonist that displaces insulin from its receptor, stimulates auto- and substrate phosphorylation of IR, and potentiates lipogenesis in adipocytes in the presence of submaximal concentrations of insulin. The various effects are observed in the 10-5−10-3 M range of ligand concentration and result in partial insulin activity. Furthermore, analogues of the related phenol red and fluorescein molecules fully displace insulin from the IR ectodomain, however, without insulin agonistic effects. The interactions are further characterized by NMR, UV−vis, and fluorescence spectroscopies. It is shown that both fluorescence and UV−vis changes in the ligand spectra induced by IR fragments occur with K d values similar to those obtained in the displacement assay. Nevertheless, insulin itself cannot completely abolish binding of the small molecules. Determination of the binding stoichiometry reveals multiple binding sites for ligands of which one overlaps with the insulin binding site on the receptor.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi015672w