Mammalian ASIC2a and ASIC3 Subunits Co-assemble into Heteromeric Proton-gated Channels Sensitive to Gd3

Proton receptors of the acid-sensing ion channel (ASIC) family are expressed in sensory neurons and thus could play a critical role in the detection of noxious acidosis. To investigate the subunit composition of native ASICs in peripheral and central neurons, we co-injected human as well as rodent A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2000-09, Vol.275 (37), p.28519-28525
Hauptverfasser: Babinski, K, Catarsi, S, Biagini, G, Séguéla, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Proton receptors of the acid-sensing ion channel (ASIC) family are expressed in sensory neurons and thus could play a critical role in the detection of noxious acidosis. To investigate the subunit composition of native ASICs in peripheral and central neurons, we co-injected human as well as rodent ASIC2a and ASIC3 subunits in Xenopus oocytes. The amplitudes of acid-induced biphasic responses mediated by co-expressed ASIC2a and ASIC3 subunits were much larger (as much as 20-fold) than the currents mediated by the respective homomers, clearly indicating functional association. The reversal potential of the ASIC2a+3 current (≥+20 mV) reflected a cationic current mainly selective for sodium. The sensitivity to pH or amiloride of single versus co-expressed ASIC subunits was not significantly different; however, gadolinium ions inhibited ASIC3 and ASIC2a+3 responses with much higher potency (IC 50 ∼40 μ m ) than the ASIC2a response (IC 50 ≥1 m m ). Biochemical interaction between ASIC2a and ASIC3 subunits was demonstrated by co-purification from transfected human embryonic kidney (HEK293) cells and Xenopus oocytes. Our in situ hybridization data showed that rat ASIC2a and ASIC3 transcripts are co-localized centrally, whereas reverse transcription-polymerase chain reaction data led us to detect co-expression of human ASIC2a and ASIC3 subunits in trigeminal sensory ganglia, brain, and testis where they might co-assemble into a novel subtype of proton-gated channels sensitive to gadolinium.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M004114200