Histopathologic response of the immature rat to diffuse traumatic brain injury
The purpose of this study was to characterize the histopathologic response of rats at postnatal day (PND) 17 following an impact-acceleration diffuse traumatic brain injury (TBI) using a 150-g/2-meter injury as previously described. This injury produces acute neurologic and physiologic derangements...
Gespeichert in:
Veröffentlicht in: | Journal of neurotrauma 2001-10, Vol.18 (10), p.967-976 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The purpose of this study was to characterize the histopathologic response of rats at postnatal day (PND) 17 following an impact-acceleration diffuse traumatic brain injury (TBI) using a 150-g/2-meter injury as previously described. This injury produces acute neurologic and physiologic derangements as well as enduring motor and Morris water maze (MWM) functional deficits. Histopathologic studies of perfusion-fixed brains were performed by gross examination and light microscopy using hematoxylin and eosin, Bielschowsky silver stain, and glial fibrillary acidic protein (GFAP) immunohistochemistry at 1, 3, 7, 28, and 90 day after injury. Gross pathologic examination revealed diffuse subarachnoid hemorrhage (SAH) at 1-3 days but minimal supratentorial intraparenchymal hemorrhage. Petechial hemorrhages were noted in ventral brainstem segments and in the cerebellum. After 1-3-day survivals, light microscopy revealed diffuse SAH and intraventricular hemorrhage (IVH), mild edema, significant axonal injury, reactive astrogliosis, and localized midline cerebellar hemorrhage. Axonal injury most commonly occurred in the long ascending and descending fiber tracts of the brainstem and occasionally in the forebrain, and was maximal at 3 days, but present until 7 days after injury. Reactive astrocytes were similarly found both in location and timing, but were also significantly identified in the hippocampus, white matter tracts, and corpus callosum. Typically, TBI produced significant diffuse SAH accompanied by cerebral and brainstem astrogliosis and axonal injury without obvious neuronal loss. Since this injury produces some pathologic changes with sustained functional deficits similar to TBI in infants and children, it should be useful for the further study of the pathophysiology and therapy of diffuse TBI and brainstem injury in the immature brain. |
---|---|
ISSN: | 0897-7151 1557-9042 |
DOI: | 10.1089/08977150152693674 |