Antithrombotic and antiplatelet activities of 2-chloro-3-[4-(ethylcarboxy)-phenyl]-amino-1,4-naphthoquinone (NQ12), a newly synthesized 1,4-naphthoquinone derivative
The possibility of NQ12 (2-chloro-3-[4-(ethylcarboxy)-phenyl]-amino-1,4-naphthoquinone) as a novel antithrombotic agent and its mode of action were investigated. The effects of NQ12 on platelet aggregation in human platelet-rich plasma in vitro, in rats ex vivo, and on murine pulmonary thrombosis in...
Gespeichert in:
Veröffentlicht in: | Biochemical pharmacology 2000-10, Vol.60 (7), p.1001-1008 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The possibility of NQ12 (2-chloro-3-[4-(ethylcarboxy)-phenyl]-amino-1,4-naphthoquinone) as a novel antithrombotic agent and its mode of action were investigated. The effects of NQ12 on platelet aggregation in human platelet-rich plasma
in vitro, in rats
ex vivo, and on murine pulmonary thrombosis
in vivo, as well as the mode of antithrombotic action were examined. NQ12 potently inhibited ADP-, collagen-, epinephrine-, and calcium ionophore-induced human platelet aggregations
in vitro concentration-dependently. NQ12 significantly inhibited rat platelet aggregation in an
ex vivo study. NQ12 prevented murine pulmonary thrombosis in a dose-dependent manner. However, NQ12 did not affect coagulation parameters such as activated partial thromboplastin time, prothrombin time, and thrombin time. NQ12 inhibited fibrinogen binding to the platelet surface GPIIb/IIIa receptor, but failed to inhibit binding to the purified GPIIb/IIIa receptor. Thromboxane B
2 formation caused by thrombin or collagen was inhibited significantly by NQ12. The phosphoinositide breakdown induced by thrombin or collagen was inhibited concentration-dependently by NQ12. These results suggest that NQ12 may be a promising antithrombotic agent, and its antithrombotic activity may be due to antiplatelet aggregation activity, which may result from the inhibition of phosphoinositide breakdown and thromboxane A
2 formation. |
---|---|
ISSN: | 0006-2952 1873-2968 |
DOI: | 10.1016/S0006-2952(00)00411-1 |