PRL-induced ERalpha gene expression is mediated by Janus kinase 2 (Jak2) while signal transducer and activator of transcription 5b (Stat5b) phosphorylation involves Jak2 and a second tyrosine kinase

In the rat corpus luteum of pregnancy, PRL stimulation of ER expression is a prerequisite for E2 to have any luteotropic effect. Previous work from our laboratory has established that PRL stimulates ERalpha expression at the level of transcription and that the transcription factor Stat5 (signal tran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular endocrinology (Baltimore, Md.) Md.), 2001-11, Vol.15 (11), p.1941-1952
Hauptverfasser: Frasor, J, Barkai, U, Zhong, L, Fazleabas, A T, Gibori, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the rat corpus luteum of pregnancy, PRL stimulation of ER expression is a prerequisite for E2 to have any luteotropic effect. Previous work from our laboratory has established that PRL stimulates ERalpha expression at the level of transcription and that the transcription factor Stat5 (signal transducer and activator of transcription 5) mediates this stimulation. Since it is well established that PRL activates Stat5 through the tyrosine kinase, Janus kinase 2 (Jak2), the role of Jak2 in PRL regulation of ERalpha expression was investigated. In primary luteinized granulosa cells, the general tyrosine kinase inhibitors, genistein and AG18, and the Jak2 inhibitor, AG490, prevented PRL stimulation of ERalpha mRNA levels, suggesting that PRL signaling to the ERalpha gene requires Jak2 activity. However, using an antibody that recognizes the tyrosine-phosphorylated forms of both Stat5a and Stat5b (Y694/Y699), it was found that AG490 could inhibit PRL-induced Stat5a phosphorylation only and had little or no effect on Stat5b phosphorylation. These effects of AG490 were confirmed in COS cells overexpressing Stat5b. Also in COS cells, a kinase-negative Jak2 prevented PRL stimulation of ERalpha promoter activity and Stat5b phosphorylation while a constitutively active Jak2 could stimulate both in the absence of PRL. Furthermore, kinase-negative-Jak2, but not AG490, could inhibit Stat5b nuclear translocation and DNA binding. Therefore, it seems that in the presence of AG490, Stat5b remains phosphorylated, is located in the nucleus and capable of binding DNA, but is apparently transcriptionally inactive. These findings suggest that PRL may activate a second tyrosine kinase, other than Jak2, that is capable of phosphorylating Stat5b without inducing transcriptional activity. To investigate whether another signaling pathway is involved, the src kinase inhibitor PP2 and the phosphoinositol-3 kinase inhibitor (PI3K), LY294002, were used. Neither inhibitor alone had any major effect on PRL regulation of ERalpha promoter activity or on PRL-induced Stat5b phosphorylation. However, the combination of AG490 and LY294002 largely prevented PRL-induced Stat5b phosphorylation. These findings indicate that PRL stimulation of ERalpha expression requires Jak2 and also that PRL can induce Stat5b phosphorylation through two tyrosine kinases, Jak2 and one downstream of PI3K. Furthermore, these results suggest that the role of Jak2 in activating Stat5b may be through a mechanism other t
ISSN:0888-8809