Changes in intracellular sodium and pH during ischaemia-reperfusion are attenuated by trimetazidine comparison between low- and zero-flow ischaemia
The aim of this study was to investigate whether trimetazidine (TMZ; 10(-6)M), which has been shown to inhibit fatty acid oxidation, reduces the ionic imbalance induced by ischaemia and reperfusion, especially through an attenuation in intracellular changes in H(+) and Na(+). Isovolumic rat hearts r...
Gespeichert in:
Veröffentlicht in: | Cardiovascular research 2000-09, Vol.47 (4), p.688-696 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of this study was to investigate whether trimetazidine (TMZ; 10(-6)M), which has been shown to inhibit fatty acid oxidation, reduces the ionic imbalance induced by ischaemia and reperfusion, especially through an attenuation in intracellular changes in H(+) and Na(+).
Isovolumic rat hearts receiving 5.5 mM glucose and 1.2 mM palmitate as metabolic substrates were exposed to zero-flow ischaemia (TI) or low-flow ischaemia (LFI - coronary flow decreased by an average of 90%) (30 min at 37 degrees C) and then reperfused. 23Na nuclear magnetic resonance (NMR) spectroscopy was used to monitor intracellular Na(+) (Na(+)(i)) and 31P NMR spectroscopy was used to monitor intracellular pH (pH(i)).
During LFI the major effect of TMZ was a significant reduction in intracellular acidosis, whereas during TI the main effect of TMZ was a significant reduction in Na(+)(i) gain. In addition, the further gain in Na(+)(i) that occurred during the first minutes of reperfusion following TI, and to a far lesser extent following LFI, was suppressed in TMZ-treated hearts and also suppressed when hearts were perfused without fatty acid. In both LFI and TI, TMZ-induced attenuation of ionic imbalance was associated with a significantly improved recovery of ventricular function on reperfusion, as assessed by a lower increase in diastolic pressure and an increased recovery of developed pressure.
Our data provide evidence that specific myocardial metabolic modulation plays a significant role in reducing ionic imbalance during ischaemia and reperfusion. |
---|---|
ISSN: | 0008-6363 1755-3245 |
DOI: | 10.1016/s0008-6363(00)00136-x |