Genetic divergence at the SODA locus of six different formae speciales of Pneumocystis carinii

Genetic divergence at the SODA (manganese-dependent superoxide dismutase, MnSOD) locus were compared in six Pneumocystis carinii formae speciales isolated from mouse, rabbit, human, macaque and pig. A degenerate oligonucleotide primer strategy was designed to amplify 85-90% of the full-length SODA g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical mycology (Oxford) 2000-08, Vol.38 (4), p.289-300
Hauptverfasser: DENIS, C. M, MAZARS, E, GUYOT, K, ÖDBERG-FERRAGUT, C, VISCOGLIOSI, E, DEI-CAS, E, WAKEFIELD, A. E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Genetic divergence at the SODA (manganese-dependent superoxide dismutase, MnSOD) locus were compared in six Pneumocystis carinii formae speciales isolated from mouse, rabbit, human, macaque and pig. A degenerate oligonucleotide primer strategy was designed to amplify 85-90% of the full-length SODA gene from P. carinii genomic DNA isolates. DNA sequence analysis revealed an A/T bias in the nucleotide composition (71-77.2%) and the presence of seven small introns (41-142 bp), interrupting each P. carinii open reading frame (ORF) at the same position. The MnSOD deduced amino acid sequences from all P. carinii isolates shared residues which were conserved within the MnSOD family and which are required for enzymatic activity and binding of the cofactor metal. Phylogenetic analysis including MnSOD sequences from representatives of the fungal phyla Basidiomycota and Ascomycota indicated that the P. carinii formae speciales form a monophyletic group that is related to the budding yeasts (subphylum Saccharomycotina, previously called class Hemiascomycetes) in the Ascomycota. In the whole Pneumocystis group, P. carinii f. sp. hominis, P. carinii f. sp. macacae and P. carinii f. sp. oryctolagi MnSOD sequences clustered together, as did the rat-derived P. carinii and P. carinii f. sp. muris sequences.
ISSN:1369-3786
1460-2709
DOI:10.1080/714030952