Protein structure alignment using environmental profiles

A new protein structure alignment procedure is described. An initial alignment is made by comparing a one-dimensional list of primary, secondary and tertiary structural features (profiles) of two proteins, without explicitly considering the three-dimensional geometry of the structures. The alignment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protein engineering 2000-08, Vol.13 (8), p.535-543
Hauptverfasser: Jung, Jongsun, Lee, Byungkook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new protein structure alignment procedure is described. An initial alignment is made by comparing a one-dimensional list of primary, secondary and tertiary structural features (profiles) of two proteins, without explicitly considering the three-dimensional geometry of the structures. The alignment is then iteratively refined in the second step, in which new alignments are found by three-dimensional superposition of the structures based on the current alignment. This new procedure is fast enough to do all-against-all structural comparisons routinely. The procedure sometimes finds an alignment that suggests an evolutionary relationship and which is not normally obtained if only geometry is considered. All pair-wise comparisons were made among 3539 protein structural domains that represent all known protein structures. The resulting 3539 z-scores were used to cluster the proteins. The number of main clusters increased continuously as the z-cutoff was raised, but the number of multiple-member clusters showed a maximum at z-cutoff values of 5.0 and 5.5. When a z-cutoff value of 5.0 was used, the total number of main clusters was 2043, of which only 336 clusters had more than one member.
ISSN:0269-2139
1741-0126
1460-213X
1741-0134
DOI:10.1093/protein/13.8.535