Protein structure alignment using environmental profiles
A new protein structure alignment procedure is described. An initial alignment is made by comparing a one-dimensional list of primary, secondary and tertiary structural features (profiles) of two proteins, without explicitly considering the three-dimensional geometry of the structures. The alignment...
Gespeichert in:
Veröffentlicht in: | Protein engineering 2000-08, Vol.13 (8), p.535-543 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new protein structure alignment procedure is described. An initial alignment is made by comparing a one-dimensional list of primary, secondary and tertiary structural features (profiles) of two proteins, without explicitly considering the three-dimensional geometry of the structures. The alignment is then iteratively refined in the second step, in which new alignments are found by three-dimensional superposition of the structures based on the current alignment. This new procedure is fast enough to do all-against-all structural comparisons routinely. The procedure sometimes finds an alignment that suggests an evolutionary relationship and which is not normally obtained if only geometry is considered. All pair-wise comparisons were made among 3539 protein structural domains that represent all known protein structures. The resulting 3539 z-scores were used to cluster the proteins. The number of main clusters increased continuously as the z-cutoff was raised, but the number of multiple-member clusters showed a maximum at z-cutoff values of 5.0 and 5.5. When a z-cutoff value of 5.0 was used, the total number of main clusters was 2043, of which only 336 clusters had more than one member. |
---|---|
ISSN: | 0269-2139 1741-0126 1460-213X 1741-0134 |
DOI: | 10.1093/protein/13.8.535 |