Genomic instability at the BUB1 locus in colorectal cancer, but not in non-small cell lung cancer

Genomic instability is observed in the majority of human tumors. Dysregulation of the mitotic spindle checkpoint is thought to be one of the mechanisms that facilitate aneuploidy in tumor cells. Mutations in the mitotic spindle checkpoint kinase BLUB1 cause a dominant negative disruption of the spin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2000-08, Vol.60 (16), p.4349-4352
Hauptverfasser: JAFFREY, R. G, PRITCHARD, S. C, CLARK, C, MURRAY, G. I, CASSIDY, J, KERR, K. M, NICOLSON, M. C, MCLEOD, H. L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Genomic instability is observed in the majority of human tumors. Dysregulation of the mitotic spindle checkpoint is thought to be one of the mechanisms that facilitate aneuploidy in tumor cells. Mutations in the mitotic spindle checkpoint kinase BLUB1 cause a dominant negative disruption of the spindle, leading to chromosome instability in cancer cell lines. However, little is known about chromosome 2q14, the genomic region containing BUB1, in human tumors. The BUB1 locus was evaluated in 32 colorectal cancer (CRC) and 20 non-small cell lung cancer (NSCLC) primary tumors using a panel of seven microsatellite repeats for 2q, two CA repeats in BUB1, and gene mutation analysis. The 2q locus was allelically stable in NSCLC but relatively unstable in colorectal primary tumors (20 of 32 tumors, 62.5%). In addition, 14.5% of CRC patients displayed instability within BUB1. Previously described BUB1 mutations and polymorphisms were rare (< 1%) in the CRC or NSCLC tumors. Our data demonstrate 2q and BUB1 allelic instability in CRC and indicate that mutations in BUB1 are rare causes of chromosome instability in CRC or NSCLC. Additional investigations may shed light on the mechanistic impact of the mitotic spindle checkpoint pathway in colorectal tumor initiation and progression.
ISSN:0008-5472
1538-7445