The intrinsic ability of AFAP-110 to alter actin filament integrity is linked with its ability to also activate cellular tyrosine kinases

The actin filament-associated protein of 110 kDa (AFAP-110) is a Src binding partner that represents a potential modulator of actin filament integrity in response to cellular signals. Previous reports have demonstrated that AFAP-110 is capable of directly binding and altering actin filaments. Deleti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2001-10, Vol.20 (45), p.6607-6616
Hauptverfasser: BAISDEN, Joseph M, GATESMAN, Amanda S, CHEREZOVA, Lidia, JIANG, Bing-Hua, FLYNN, Daniel C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The actin filament-associated protein of 110 kDa (AFAP-110) is a Src binding partner that represents a potential modulator of actin filament integrity in response to cellular signals. Previous reports have demonstrated that AFAP-110 is capable of directly binding and altering actin filaments. Deletion of the leucine zipper motif of AFAP-110 (AFAP-110(Deltalzip)) has been shown to induce a phenotype which resembles Src-transformed cells, by repositioning actin filaments into rosettes. This deletion also mimics a conformational change in AFAP-110 that is detected in Src-transformed cells. The results presented here indicate that unlike AFAP-110, AFAP-110(Deltalzip) is capable of activating cellular tyrosine kinases, including Src family members, and that AFAP-110(Deltalzip) itself is hyperphosphorylated. The newly tyrosine phosphorylated proteins and activated Src-family members appear to be associated with actin-rich lamellipodia. A point mutation that alters the SH3-binding motif of AFAP-110(Deltalzip) prevents it from activating tyrosine kinases and altering actin filament integrity. In addition, a deletion within a pleckstrin homology (PH) domain of AFAP-110(Deltalzip) will also revert its effects upon actin filaments. Lastly, dominant-positive RhoA(V14) will block the ability of AFAP-110(Deltalzip) from inducing actin filament rosettes, but does not inhibit Src activation. Thus, conformational changes in AFAP-110 enable it to activate cellular kinases in a mechanism requiring SH3 and/or PH domain interactions. We hypothesize that cellular signals which alter AFAP-110 conformation, enable it to activate cellular kinases such as cSrc, which then direct changes in actin filament integrity in a Rho-dependent fashion.
ISSN:0950-9232
1476-5594
DOI:10.1038/sj.onc.1204802