The effect of autonomous alpha-CaMKII expression on sensory responses and experience-dependent plasticity in mouse barrel cortex
The calcium/calmodulin kinase II (CaMKII) autophosphorylation site is thought to be important for plasticity, learning and memory. If autophosphorylation is prevented by a point mutation (T286A) LTP is blocked in the hippocampus and cortex. Conversely, if the point mutation mimics autophosphorylatio...
Gespeichert in:
Veröffentlicht in: | Neuropharmacology 2001-11, Vol.41 (6), p.771-778 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The calcium/calmodulin kinase II (CaMKII) autophosphorylation site is thought to be important for plasticity, learning and memory. If autophosphorylation is prevented by a point mutation (T286A) LTP is blocked in the hippocampus and cortex. Conversely, if the point mutation mimics autophosphorylation (T286D) a range of frequencies that normally produce LTP in wild types cause LTD instead. In order to test whether the αCaMKII-T286D mutation increases levels of depression in vivo, we examined the effect of the αCaMKII-T286D transgene on plasticity induced in the barrel cortex by whisker deprivation. Surprisingly, the mutation did not affect depression or potentiation. However, in animals reared with the transgene turned on from birth, the surround receptive field responses were greater than normal. This effect may be due to the potentiating action of autophosphorylated CaMKII during early development. |
---|---|
ISSN: | 0028-3908 1873-7064 |
DOI: | 10.1016/S0028-3908(01)00097-1 |