Formation of Quinonoid-Derived Protein Adducts in the Liver and Brain of Sprague-Dawley Rats Treated with 2,2‘,5,5‘-Tetrachlorobiphenyl

A possible role for metabolic activation of 2,2‘,5,5‘-tetrachlorobiphenyl (TCB) to quinonoid metabolites was investigated in vitro in rat liver microsomes and in vivo in male Sprague-Dawley rats. Incubation of TCB with phenobarbital-induced rat liver microsomes resulted in metabolism of TCB to 3-hyd...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical research in toxicology 2000-08, Vol.13 (8), p.710-718
Hauptverfasser: Lin, Po-Hsiung, Sangaiah, Ramiah, Ranasinghe, Asoka, Upton, Patricia B, La, David K, Gold, Avram, Swenberg, James A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A possible role for metabolic activation of 2,2‘,5,5‘-tetrachlorobiphenyl (TCB) to quinonoid metabolites was investigated in vitro in rat liver microsomes and in vivo in male Sprague-Dawley rats. Incubation of TCB with phenobarbital-induced rat liver microsomes resulted in metabolism of TCB to 3-hydroxy-TCB (3-OH-TCB) and 3,4-dihydroxy-TCB (3,4-diOH-TCB), which were further oxidized to form a reactive intermediate that bound to liver proteins. The predominant species observed in the Raney nickel assay for cysteinyl adducts was identified as 3,4-diOH-TCB, consistent with an adduct having the structure 5-cysteinyl-3,6-dichloro-4-(2‘,5‘-dichlorophenyl)-1,2-benzoquinone. This adduct may arise via the Michael addition of the sulfhydryl group of cysteine to 3,6-dichloro-4-(2‘,5‘-dichlorophenyl)-1,2-benzoquinone (Cl4PhBQ). Metabolism of 3-OH-TCB by phenobarbital-induced microsomes in the presence of either NADPH or cumene hydroperoxide as a cofactor resulted in the formation of adducts. Dose-dependent formation of cysteinyl adducts was observed in liver cytosolic protein from rats treated with a single dose of TCB (0−200 mg/kg) by gavage. By regression analysis, the TCB adducts decayed with a half-life of 2.03 ± 0.131 days (mean ± SE), which is ∼2.5-fold shorter than the endogenous half-life for liver cytosolic protein in rat liver, suggesting adduct instability. Saturable formation of TCB adducts was observed in liver cytosolic protein of rats receiving multiple doses of TCB over 5 days. The levels of Cl4PhBQ-derived adducts were 2.1-fold greater than the estimated steady-state levels predicted by the single-dose treatment [97.7 ± 13.2 vs 45.7 ± 3.73 (pmol/g)/(mg/kg of body weight)], suggesting induction of metabolism. A single cysteinyl adduct, inferred to be 5-cysteinyl-3,6-dichloro-4-(2‘,5‘-dichlorophenyl)-1,2-benzoquinone, was detected in brain cytosolic protein of rats treated with multiple doses of TCB with levels of 15.2 (pmol/g)/(mg/kg of body weight). Implied involvement of a reactive quinone in the liver and brain of TCB-treated rats supports the idea that quinonoid metabolites may be important contributors to PCB-derived oxidative damage to genomic DNA.
ISSN:0893-228X
1520-5010
DOI:10.1021/tx000030f