How Persistent Is Cyclopropyl upon Nucleophilic Substitution, and Is Frontside Displacement Possible? A Model Study

Quantum chemical model calculations (MP2/6-31G(d,p)) demonstrate that frontside nucleophilic substitution is not possible in the reaction between water and protonated cyclopropanol. Instead, ring opening occurs, in accordance with a well-known disrotary ring-opening mechanism. When the cyclopropane...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of organic chemistry 2001-10, Vol.66 (21), p.7084-7089
1. Verfasser: Uggerud, Einar
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantum chemical model calculations (MP2/6-31G(d,p)) demonstrate that frontside nucleophilic substitution is not possible in the reaction between water and protonated cyclopropanol. Instead, ring opening occurs, in accordance with a well-known disrotary ring-opening mechanism. When the cyclopropane ring is embedded in a stabilizing bicyclic structure, as in protonated bicyclo[3.1.0]hexanol, the mechanistic landscape changes. In this case frontside nucleophilic substitution occurs, and has a potential energy barrier which is lower than that of the corresponding backside substitution, which implies that the stereochemical outcome of this gas-phase nucleophilic substitution reaction is uncoupled from its kinetic order. This and similar results challenge the traditional view that nucleophilic substitution reactions should be categorized as being either SN1 or SN2.
ISSN:0022-3263
1520-6904
DOI:10.1021/jo010546j